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The optical properties of particles deposited
on a surface.

Final Technical Report on Contract DAJA45-93-C-0043

1. Outline of the research.

In recent years the optical properties of particles near or on a plane surface
have been the subject of several papers that deal with both the theoretical and
the experimental aspects of the problem. This interest from the scientific com-
munity can be easily understood because revealing through optical measure-
ments the presence of particles on a surface that is expected to be clean is of
great importance both for industry and fc  edicine.

Among the theoretical techniques th? > been proposed to deal with the
problem the method of the images prov - » the most fruitful when the
plane surface is a perfectly reflecting one,a . .iton that is met to a high de-

gree of accuracy by many polished metallic suri _s. According to the theory of
the images the problem of scattering from a particle in the vicinity of a perfectly
reflecting plane surface is quite equivalent to the problem of the dependent
scattering from the compound object that is composed by the actual particle
and by its mirror image when excited by the superposition of the fields that
come from the actual source and from its image. Of course, the method of the
images is advantageous provided one is able to solve, without undue computa-
tional effort, the problem of scattering from the compound scatterer. In fact, the
lack of an efficient technique to deal with this problem forced several research-
ers to solve the problem for limiting cases only, e. g. normal incidence, or
through approximations, such as the assumption of smaliness of the scattering
particle.

2. Method of attack.

The method that we used for our research combines the method of the imag-
es with the technique that we developed several years ago to calculate the scat-
tering properties of aggregated spheres. When one assumes that the actual par-
ticle is or can be modelled as a cluster of spherical scatterers, the method of the
images requires to deal with the properties of a cluster that contains twice as
many spheres as the actual object. The fact that the exciting field is the superpo-
sition of two plane waves does not introduce any additional difficulty. Further-
more, the presence of the reflecting surface does not prevent us from perform-
ing analytical averages over the orientations of the scattering particles.
Therefore our approach is suitable to calculate the scattering pattern not only
from single spheres and from single aggregates of spheres but also from a dis-
persion of identical aggregates whose orientations differ only for a rotation
around an axis orthogonal to the reflecting surface.

As our approach does not imply any approximation nor limitation both on
the direction of incidence and of observation and on the polarization both of the
incident and of the scattered field, we were able to calculate the full scattering
pattern for a few representative examples of aggregates that are meant to simu-
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late the presence of anisotropic particles on the reflecting surface. Moreover,
our approach applies also to hemispheres and to aggregated hemispheres with
their flat face lying on the surface; this suggests the possibility of simulating the
properties of an arbitrarily rough metallic surface.

3. Sketch of the results.

Although both the theory and the main results of our research are fully ex-
plained in the enclosed paper, that has been accepted for publication in JOSA
A, it may be useful to summarize here the most relevant findings.

For a dispersion of model anisotropic particles on the surface our results
show that the anisotropy is not masked by the random orientation of the parti-
cles; the anisotropy can be revealed by observing the polarized light that propa-
gates along the reflecting surface at right angles to the plane of incidence.

The need to deal with the compound scatterer (actual particle and its image)
persists until the distance between the actual particle and the surface does not
exceed 5d, where d is the linear size of the actual particle (for spheres, d coin-
cides with the diameter).

The approximations that are based on the assumption of smallness of the
scattering particles may present severe drawbacks. In fact, although a small
particle in the vicinity of the surface is equivalent to the cluster of two identical
small particles, the cluster itself may be not small enough to grant the applica-
bility of the Rayleigh approximation.

4. List of publications.

F. Borghese, P. Denti, R. Saija, E. Fucile and O. I. Sindoni, "Optical properties
of particles on or near a perfectily reflecting surface,” Accepted for publication
in]. Opt. Soc. Am. A

5. Partecipants to the research.

F. Borghese, P. Denti, R. Saija and O. I. Sindoni

E. Fucile, who, thak to the work done under the present Contract Gained the
degree of Dottore di Ricerca in Fisica (Resarch Doctor in Physics, more or less
equivalent to the amlerican Ph. D. in Physics)

Y R LA B

Puie
iriie,. .

Jwatl o

3 S

D‘J'ﬁ'@-’ St
P e L %

Pist Eoge e,

e e

Bvaii iy




Optical properties of model anisotropic particles on or near
a perfectly reflecting surface

F. Borghese, P. Denti, R. Saija
Universita di Messina, Istituto di Strutlura della Malcria
98166 Messma, ltaly

I5. Fucile
Centro Siciliano per le Ricerche Atmosferiche e di Fisica dell'Ambiente
93166 Messina, Italy

O. 1. Sindom

Edgewood Rescarch Devclopment Engineering Center,
Aberdeen Proving Ground, Md 21010, U. S. A.

In the framework of the image theory the Mull scattering pattern from modcl anisotropic particles
on a perfectly refllecting surface is calculated for an arbitrary direction of the incident field. The
particles on the surface are modelled cither as clusters of spherical scatterers or as clusters of hemi-
spheres whose flat face lies on the reflecting surface. Our approach is based on the expansion of all
the ficlds in terms of spherical multipoles whose transformation properties are used to get a compact
expression for the scattered intensity both [rom a single particle as a function of its orientation and
from a dispersion of randomly oriented particles. The patterns that were calculated for several model
scatterers show some (eatures that may give useful suggestions on the possible anisotropy of actual
particles on a reflecting surface.

1. Introduction

The exact solution to the problem of electromagnetic scattering from particles near or on a substrate of general
dielectric properties bounded by a ptane surface has been worked out for spheres only.!™ The literature also reports
approximate solutions both for spheres and for particles of general shape that apply e. g. to objects far from the
surface or to small objects on the surface itsell.>° The nced to resort to approximations is not surprising because the
simultaneous presence of the closed surface of the particle and of the open plane surface of the substrate complicates
the boundary condition problem that one has to solve to get the pattern of the scattered radiation. When the plane
surface is perfectly reflecting the image theory allows one to substitute the problem at hand with the equivalent
problem of scattering from the object that is composed by the actual scatterer and by its image,” but this substi-
tution amounts to an effective simplification only when the dependent scattering from the compound object can be
calculated. Actually, in the case of a perfectly reflecting surface an exact solution has been worked out for both
spheres®® and cylinders.®

In this paper we will resort just to the image theory to calculate the pattern of the scattered radiation from single
model anisotropic particles on or near a perfectly reflecting plane as well as the pattern from a dispersion of identical
model anisotropic particles, with random orientation, that form a low-density monolayer on or near the surface. The
anisotropic particles will be modelled as clusters of spherical scatterers on account that, in the framework of the
image theory, the scattering from a single sphere necar a perfectly reflecting surface is equivalent to the dependent
scattering from the binary cluster that is composed of the actual sphere and of its image, provided the exciting field
is the superposition of the ficlds that come from the actual source and from its image.® Thus, if the object in front
of the surface is a cluster of spheres, one has to deal with the scattering pattern from a cluster that has twice the
spheres than the actual cluster.

The scattering from a cluster of spheres can he calculated with a high degree of precision and without undue
computational effort through the technique that we devised a few years ago.!® We based our approach on the
expansion of the incident, of the scaltered and of the internal field in terms of spherical multipoles!'™4 and on the
imposition of the appropriate boundary conditions at the surface of cach one of the spheres in the cluster. The




final equations are aflected by no approximation and, in fact, proved to yicld results that are in excellent agreement
with the available experimental data for single clusters.'® 1% A noticeable feature of our formalism is that, through
the use of the transformation propertics of the spherical multipoles under rotation, the scattering amplitude of any
cluster turns out to be factorized into a part that depends only on the structure and on the orientation of the cluster
and into another part that depends only on the polarization and on the direction both of the incident and of the
scattered field.!” On account of this separation the pattern of the scattered radiation from a cluster of arbitrary
orientation can be calculated, without undue computational effort, for whatever polarization and direction both of
incidence and of obscrvation. Qur formalism is also suitable to calculate the scattering pattern from an assembly
of identical clusters with random orientation, provided their number density is so low that the multiple scattering
processes among different clusters can be neglected. The scattering amplitude depends, indeed, on the orientation
of the cluster only through the D-matrices, i. e. through the irreducible representations of the three-dimensional
rotation group;!® therefore, once the scattering amplitude is known for a single orientation, it is also immediately
known for any other orientation. Using this dependence of the scattering amplitude on the orientation, the average
that must be calculated to get the scattering pattern from the whole assembly can be performed analytically in many
cases of interest; even when the average must be performed numerically the comnputation requires, however, little
effort.

In this paper we will use just the formalism that we outlined above!®!7 to calculate the scattered intensity from a
dispersion of identical clusters on the reflecting surface; our only assumption is that the actual objects together with
their images are still identical to each other and that the orientations of any two clusters difler for a rotation around
an axis orthogonal to the reflecting surface. We stress that our procedure does not imply any limitation either on the
polarization or on the direction both of the incident and of the observed wave. The same procedure is also applicable
to one or more hemispheres whose flat face lies on the surface as these objects, together with their images, form
either a single sphere or a cluster of spheres. In this paper we will also deal with the scattering pattern from these
objects in order to gain some information on their properties because, in our opinion, a dispersion of hemispheres on
a plane surface could be an uscful model to simulate the properties of e. g. a rough metallic surface.

2. Theory
A. The incident ficld and the reflected field

Let us assume that the hallspace = < 0 is filled with a perfectly conducting material, such as a metal: the bounding
surface z = 0 is thus perfectly reflecting. We assume that the incident field is the plane wave

E'™¢ = Eyésexp(ik; - r)

that propagates in the halfspace = > 0 of (real) refractive index n with (unit) polarization vector &; and wavevector
k; = nkky; as usual, ¥ = w/c and the time dependence exp(—iwt) is omitted throughout. The muitipole expansion
of the incident field is

E" = B 3 W), 30 (nk. v), (1)

im
pim

where we define the spherical multipoles

im im

Ik, ) = Gikr)Xim (), 33N (kx) = %v x i)k, x)

whose parity is given by the superscript p = 1, 2 that distinguishes the magnetic multipoles (p = 1) from the electric
ones (p = 2); the Xim's are vector spherical harmonics.'* In turn the multipole amplitudes W; are defined as

wih, = WyP(&r, k),

where




(1)(0‘ ) = 4”' @ xlm(k) lm (c k) = 4”"+l(k x 0) xlm(k)

The reflected field coincides with the ficld that comes from the mirror image of the source and has the expansion

hn

E™ = Eo Y Wi, 3 k. x).
pim

Of course, the condition of reflection implies that the polarizations of E**< and E™ cannot be mutually independent;
therefore the relation between them will be presently established. Since the plane z = 0 is perfectly reflecting, there
is no transmitted field: thus E™¢ and E"™ must have the same amplitude as well as the same phase on that plane.
Therefore, the boundary conditions at the reflecting surface read

(&7 + ér) x 11 = 0, (2)

where fi is the unit normal to the surface. In order to find the explicit relation between the polarization of the
incident and of the reflected wave it is convenient to introduce a basis for the projection of the states of polarization.
For the incident wave we introduce the pair of unit vectors tiy, that lies in the plane of k; and of ii and is orthogonal

to k;, and Gy = ky x 1y for the reflected wave we define the pair @igy and figy that are orthogonal to kg and to

each other with tigy in the plane of kg and fi. By projecting & and &r on the respective basis and imposing the
boundary conditions, eq. (2), we get

ery = e, epL = =€y
when the polarization is linear. For the case of circular polarization we define the bascs

. | S " | S o
Gy = E(“I" Flyy), vipg = ﬁ(“ﬂll ¥ itigy),
and with the same procedure we get

ER- = €14, €Ry = €.

Although the field that actually excites the particles is E* = E™¢ + E™/, the relations above allow us to refer to
the direction of incidence and to the polarization of the incident field only.

B. The scattered field

The field that is scattered by the compound object that includes the actual particle and its mirror image can be
expanded as

E*® = E, ZA(P) (P)(nk,r)‘ (3)

hn
plm

where the multipole fields Hif)'s are identical to the Jf,’:}’s except for the substitution of the spherical Hankel functions

hfl)(kr) to the spherical Besscl functions ji(kr). The amplitudes Ag:,’,) are related to the amplitudes of the exciting
field E**¢ through the equation

(r) Pe) ')
Z im, I’m’ li m’" (4)

lllml

where

(p") (r") P
W f =W ' + ”/Rpl’m’

Elm’ I'm!




The matrix S, of elements S}00, )

on the aggregate composed of the particle and of its image. The form of eq. (4) is essential to perform the angular
analysis of the scattercd radiation, as in Lhis equation the structural information is factorized with respect to the
angular information. In other words, S depends on the geometry, on the orientation and on the scattering power of
the particle whereas all the information on the direction and on the polarization of the incident wave is contained in
the We’s.

Let us now recall that the particles that we deal with in this paper together with their image always form a cluster
of spheres; therefore their S-matrix can be evaluated through the technique that we devised several years ago to
describe the scattering properties of aggregated spheres. The complete theory has been published elsewhere'® so
that, in Appendix A, we report only the guidelines of our procedure for the calculation of S. This matrix is related
to the matrix M™~! that is the inverse of the matrix M that expresses the boundary conditions at the surface of
each one of the spheres in terms of multipole ficlds.!® The matrix M accounts for the fact that the incident field
on each one of the spheres is the superposition of E“* and of the fields that have already been scattered by all
the other spheres in the aggregate. In other words the field scattered by the whole aggregate is calculated through
a dependent scattering approach. For an aggregate of N spheres with no particular symmetry the order of M is
dagr = 2N Lag(Lag +2), where Ly is the maxinmun value of { that niust be retained into the expansions eq. (1) and (3)
to get fairly convergent results for the scattered field. Therefore, M can become rather big thus requiring a long
computer time for its inversion; actually, the calculation of AM~! is responsible for the most part of the calculations
that are needed to get the scattered field. The use of group theory, however, may help to reduce the computational
effort through the exploitation of the symmetry properties of the scatterer.?®?! In this respect, it is worth recalling
that our compound scatterers (actual object and its image) do have at least the reflection symmetry with respect to
the plane of the substrate. Furtherniore, if the compound scatterers have also the cylindrical symmetry around an
axis orthogonal to the surface. the direct use of the machinery of group theory is not necessary, because the choice
of the cylindrical axis as the z axis produces an automatic factorization of the M matrix with respect to the index
m. In this case the highest order of the matrices to be inverted is dyg = 2N Lps only.

v i the so called transition matrix'® and contains all the structural information

C. The scattered intensity

The relevant quantity is the matrix Iy, = 150" Enet the indices i and 5 refer to the polarization of the scattered
and of the incident field. respectively. The scattered field from a particle at the origin of the frame of reference can
be written as

exp(inkr)
;;"l = Eo , Jow

provided r is large, so that

2

Ey
I,m: = Tf,m, \

where the f,, are the elements of the normalized scattering amplitude'4 that are known to depend both on the
incident and on the scattered wavevector as well as on the orientation of the particle with respect to a frame of
reference fixed in the laboratory. Of course, the scattering amplitude that we must consider here is that of the
compound scatterer that is composed by the object in front of the surface and by its mirror image. The f,, are
related to the elements of the transition matrix through the equation'”

i (P Ap.p Ap'
_ § : § : Ap) Ap.p) )
!’l'l' - 4ank i St 'Slm.l'm’ L Sn'ltm’ (5)
plm p'im’
with

i A t
W.;p,,)lm = W/,::)(C.S’.k._ﬁ')v

where &5 and ks are the polarization vector and the direction of observation of the scattered ficld, respectively. If
one lias to calculate the scattering pattern from a single cluster in the vicinity of the reflecting surface, eq. (5) is




quite efficient as its form shows that, once the S-matrix is known, the scattered intensity can be calculated without
undue computanonal effort. for any k; and kg.

When one is interested in the pattern of the seattered radiation from an assembly of identical scatterers in front
of the surface, the distribution of their orientations must he taken into account. This can be done by associating
to each cluster a local system of axes chosen so that when two clusters are superposed their respective local axes
coincide. As explained elsewhere in full detail,'” the scattering amplitude of a cluster of known orientation is given

by

e vy T ) Ap '
f'm' = 4”1' z Z Z ”/:lr, ha );u:) (()) Sl:: it l)u m' (()) ”I’q’l’m" (6)

plm pittan!

. . - o . . .
where © = (o, 3. %) is a shorthand for the three Euler angles'® that chdract.nnze the orientation of the local frame

. . (p)= Ap . .
with respect to the laboratory frame. In eq. (6) both IV,',,),,” and W! .",,,,,,, are given in the laboratory frame whereas

the elements of the traunsition matrix, §;:::/’/I" are calenlated in the local frame and are thus independent of the
orientation of the scatterer; the [2's, in turn, are the irreducible representations of the rotation group,!l:'¥ i, e. the
matrices that transform the laboratory frame into the local {frame. Equation (G) shows that, even when dealing with
an assembly of identical scatterers, we need to calculate the transition matrix only once.

We have now all the ingredients that are necessary to calculate the scattered intensity from an assembly of identical
clusters in the vicnity of the reflecting surface. It is to be stressed, however, that the applicability of the method of
the images requires that we consider a monolayer of clusters that are so arranged that the centers of the corresponding
spheres in different clusters have the same distance from the surface. A moment’s thought will convince the reader
that this condition implies that all the compound scatterers that are composed by the actual objects and by their
tespective images are identical to cach other and that the orientations of any two of them differ for a rotation around
an axis that is perpendicular to the surface. With this in mind we can write the total scattered intensity as

-I.'m‘ = Z E; 'm') (z Ly vm’) = .N(IE;;,,'(R., e)'g) + (N2 - A’)(E;,’/(R, @)E’m’(n',' OI))V

where v and v’ are particle indexes, N is the number of the particles on the reflecting surface, Ey,/(R,©) is the
scattered field from a particle at the position R. with orientation ©, and the brackets denote the ensemble average
over both the position and the orientation of the particles. The first term on the right-hand side, the so called self
term, contributes to the scattered intensity for any angle of observation. Even the second term, that is a two-body
term, may become important for nonrandom distributions of the scatterers, but, when they are randomly distributed
upon the surface, it does contribute in the direction of reflection only.?? Ulimately, as in this paper we deal just with
monolayers of randomly distributed scatterers, we will outright disregard the two-body term so that T, reduces to

Top: = N{lppy) = N / Iy (R, ©)w(R,0)dR dO,

where w(R, ©) is the normalized density distribution function with respect to the position of the particles and their
angular orientation. Since we assume that there is no correlation between the position and the orientation of the
scatterers w can be factorized as w(R, ©) = wn(R)we(O); furthermore the distance of observation is assumed, as
usual, to be very large with respect to the size of the reflecting surface, so that we can put R = 0 and write

(Inn) z/I,,,,:(R,.(-))wn_(R.)we((-))de(-) :::/1(»[1,(1'!.)(1[1,/I,,,,/(O.G)we(e)d@
= /1,,,,:((),(-))u-(.)((-))d(-),
on account that

/ wr{R)dR.

1
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The orientation of any two clusters differs only by a rotation around an axis that is orthogonal to the surface; thus, we

choose the z axis of the local reference frame that we attached to each cluster to coincide with that axis, 8 = v = 0,
. bt d

and the average involves the Euler angle o only. Now,'?

DW (,0,0) = exp{—ipa)d,,,.

um
so that eq. (6) reads
ple ')
f"l'l Z Z W Snilm e ‘\p(”"“) k‘lm ! (‘\l)(—”” (Y) H/F"’l'm’
plm plltm!

Then, the total scattered intensity is

5 N u . -
I'I'I' = 16‘”" .2,.2 E E .,,, ‘mm’ ,rm m' m“’lm-m'-m”+m‘“ ’ (l)
man! mtnt
where
Z Z AP Tl Ap')
rm 'mm' = 1" Syl .S,," !’m’ ”/[‘y,'l'm’ (8)
roptt

2x
I, = / exp(—tap)w(a)da,
0
where in turn
w(a) = we(a, B = 0,7 = 0).

Equation (7) gives the scattered intensity for a general orientational distribution of the scatterers, i. e. for a general
w(a). In particular, if w(a) = 1/27, i. e. when the clusters are randomly oriented, I, = §,.0; this implics that the
sums in eq. (7) are subject to the constraint m — m’ — m” + m" = 0.

The average over the orientations is, of course, not necessary and is actnally not performed in two important
cases: when all the compound scatterers are oriented alike or when they have cylindrical symmetry around an axis
perpendicular to the surface. The latter case occurs when the centers of all the spheres that form a cluster lie on a
straight line that is perpendicular to the surface. However, even in these two special cases our orientational averaging
procedure yields the correct results as we will show presently. When all the clusters are oriented alike, S can be
calculated with respect to a local reference frame whose axes are parallel to those of the laboratory frame; as a
consequence w(a) = é(«a), where & is the Dirac delta function, and I, = 1, so that eq. (7) becomes

E E ﬂ,m"’/ F',”I'nllmlll,

mm’ m!'m!

- N
m' = 1672k2r2

Eo

L]

If the clusters have cylindrical symmetry, the elements 5 . . do not vanish for m = m’ only,!® and the same holds
lm I m

true for Fyyipnme. €q.(8). hecanse we just chose the cyhndrlcal axis as the z axis of the local frame; consequently, eq.

(7) simplifies to

N
16724702

- F'o
1 ' =

E ,7,7 mm 'I'I fmimt,

mm?’

on account that Z,,_,n - nrgmen = Zg = 1 according to its definition. Thus even in the above mentioned special cases
our orientation averaging procedure works properly and yields the trivial result that the total scattered intensity
equals N times the intensity that is scattered by an individual particle?3:13,




3. Results and discussion

The theory that we described in the preceding sections has been tested against the results reported by Johnson
for a single sphere ncar or in contact with the reflecting surface.  Actually, we were able to reproduce with the
highest accuracy the results that Johnson reports in Figs. 7-10 of his paper.® However, we are not restricted to
normal incidence so that we are able to calculate the full pattern of the scattered intensity at any incidence not
only for a single spherc on the reflecting surface but also lor some representative anisotropic model particles. In
fact, we perforiaed our calculations also for a cluster of two identical and mutually contacting spheres lying on the
surface as well as for clusters of two identical mutually contacting hemispheres and for linear chains of four identical
hemispheres — the neighbouring hemispheres arc in contact with each other — with their flat face lying on the
reflecting surface. With the exception of the case of a single sphere, almost all the patterns that we report refer to
a dispersion of identical objects whose orientations are randomly distributed as explained in Subsection 2C. In our
calculations we asswuned that the medium that fills the accessible half-space is the vacuum (n = 1) and that the
wavelength of the incident radiation is A = 628.3 mn; the refractive index of both the spheres and the hemispheres
is ng = 3 while the radius both of the single sphere and of the hemispheres that form a binary cluster was chosen to
be b, = 126.0 nmy; in turn the eadius both of the spheres that form the binary cluster and of the hemispheres that
form the four-hemispheres chain is by = 100.0 nm. This choice of the radii is not casual as it makes the total volume
of all the clusters, cither of spheres or of hemispheres, equal to the volume of the single sphere. In fact, since we
are mainly interested in the effects of the anisotropy, we found it convenient, according to our previous experience,*!
to investigate objects with a different geometry but containing the same quantity of refractive material. The size
parameter of the single sphere turns out 1o be ro = kb, = 1.26 whereas the size parameter of the spheres that
form the binary clusters is ry = kb = 1.0. As a result. the maxunum value of [ that we had to include into the
multipole expansions, eqs. (1) and (3), was Ly = 8 for the single sphere, Ly = 9 for the two-hemispheres clusters
and Las = 10 both for the two-spheres and the four-hemispheres clusters in order to achieve the convergence to four
significant digits: this convergence criterion is, of course, more strict thal required for an accurate display of our
results. The need to use so large a value of Ly even for the single sphere is due to the fact that our calculations do
not actually deal with a single sphere but rather with the two-sphere cluster that is composed by the actual sphere
and by its image. Now. according to Waterman,'® we define the size parameter, z, of a non-spherical object as the
size parameter of the smallest. sphere that may contain the object itsell. Accordingly, for the single sphere we have
z = 2.52 and even larger values (or the other clusters that we consider in this paper. If one also adds that the
refractive index is ng = 3 the values of Ly that we quotcd above can in no way be considered too large.

Before discussing our results let us recall that the theory of the preceding sections has been set up on the assumption
that the z axis is orthogonal to the reflecting surface. This choice is hatdly compulsory but, for cylindrically-symmetric
particles, it yields the automatic factorization of the matrix M as explained at the end of Subsection 2C. We also
stress that, according to the set up of the theory, the polar angles of the direction of observation should be in
the range 0 < ps < 360° and 0 < 95 < 90°. \We preferred, instead, to display our results with respect to the
frame of reference that is sketched in Fig. 1: the reflecting surface coincides with the xz plane and the y axis is
thus orthogonal to the surface and directed towards the accessible halfspace. Accordingly, the scattering pattern is
reported for 0 < s < 180° and 0 < d5 < 180°. Since the scattering pattern depends on the direction of incidence,
the latter need to he specified. Now, according to eq. (6), once the matrix S is known, the generation of the scattering
pattern for several values of 7; and 5/ is a fast and low-cost operation that produces a large amount of data, however.
Therefore we resolved to report all the scattering patterns for a single direction of incidence only. This direction,
that in Fig. 1 is indicated by an arrow, was chosen to form an angle of 45° with the normal to the surface and has
thus 97 = 90° and p; = 225°.

We also cliose to not refer the state of polarization to a pair of basis vectors that are parallel and orthogonal to
the scattering plane, i. ¢. 1o the plane of k; and kg: we preferred instead to project the polarization vector along
the pair of unit vectors ¥ and @ that are tangent to the the meridians and to the parallels, respectively, of the big
sphere that is depicted in Fig. 1. Of course, on account of this choice, the appearance of cross-polarization effects is
expected even when the scatterer is a single sphere.

The quantity that we report in Figs. 2-4 as a function of ¥s and g is 721, /I for the single particles and
r"’(l,,,,:)/lo for the dispersions, where 1 is the distance of observation, Iy the incident intensity, Iny is the observed
intensity, (/) is the oricntationally-averaged observed intensity; the indices 5 and 5 indicate the polarization of
the observed and of the incident ficld, respectively, and take on the symbolic values ¥ and ¢ to denote polarization

i ) op———




along the meridians (- polarization) and along the parallels (y-polarization), respectively, It should also be noticed
that even when g reaches its hmiting vatues, dg = 0° and g = 180°, the angle ¢ is still well defined as this
angle characterizes an observation with a well defined choice of the polarization, e. g. along the meridians. Thus,
the limiting curves of our patterns (e = 0° and g = 180°) describe the observation of the scattered beam that
propagates along the reflecting surface at right angles to the plane of incidence with a polarization that depends
on g: so, for the ?-polarized component of the scattered wave, when g = 90°, E*® is orthogonal to the surface,
whereas when g = 0° or o5 = 180°, E**® is parallel to the reflecting surface and thus, as a direct consequence of the
boundary conditions, the scatlered intensity must vanish; for the p-polarized component of the scattered wave, when
ps = 0° or ps = 180°, E*** is orthogonal to the surface wlhercas, when ¢s = 90°, E*“® is parallel to the reflecting
surface and thus the scattered inteusity must again vanish. Since, for any given polarization, the four extreme vertices
of the pattern correspond to the same physical situation, the scattered intensity must have the same value at all
these extreme poiuts; a further consequence is that oo g, Lo (s = 0%, = 0°) = Jpo(ds = 0°, s = 90°).

All these features can be seen in Figs. 2-4 that report the results of our calculations. In particular, Fig. 2 reports
the scattering pattern (a) for a single spliere on the surface, (h) for a dispersion of randomliy oriented clusters of two
mutually contacting spheres on the surface, () for a dispersion of randomly oriented linear chains of four hemispheres
and (d) for a linear chain of four hiemispheres along the z axis: the flat face of all the hemispheres lies on the reflecting
surface. The incident ficld is @-polarized and the g-polarized component of the scattered wave is considered. We first
remark that the pattern for a single sphere in Fig. 2 (a) shows only a symmetry of reflection in the plane of incidence.
Therelore, even for such a cylindrically symmetric object all the directions of scattering must be considered when
the incidence is not normal to the reflecting plane. In all the four patterns in Fig. 2 we notice the presence of a
strong scattered beam that propagates along the reflecting surface in the forward direction (95 = 90°, ¢s = 180°).
We also notice the two wings in the pattern from the linear chain of four-hemispheres in Fig. 2(d). The comparison
with the orientationally averaged pattern in Fig. 2 (c) suggests that the observed wings are a result of the particular
orientation of the scaticrers, Let us now consider the limiting curves at g = 0° and 95 = 180°. It is quite evident
that these curves are almost flat for all the clusters but are in no way flat for the single sphere. This suggests that
the observation of the scattered light that propagates along the reflecting surface may yield useful information on
the shape of the scattering particles.

This is confirmed by the patterns in Fig. 3 that report onr results (a) for a single sphere and for the assemblies
(b) of randomly oriented two-spheres clusters, (¢) two-hemispheres clusters and (d) four-hemispheres linear chains.
The incident wave is i)-polarized and the p-polarized component of the scattered wave is considered, so that all the
patterns describe cross-polarization effects. Let us remark first that the patterns in (a) and (b), that refer to a single
sphere and to the two-sphere clusters, present a couple of peaks for non-limiting values of 95 and ¢g: such peaks are
not present in the patterns in (¢} and (d), that refer to the two-hemispheres and to the four-hemispheres clusters.
Furthermore, the patterns for all the clusters, either of spheres and of hemispheres reach their maximum value at
the four vertices (Jg = 0°, 180° and 5 = 0°,180°): this is not the case for the single sphere in (a). The differences
of the patterns of the single sphere and of the clusters can bhe attributed on one hand to the cylindrical symmetry
of the single sphere and on the other hand to the anisotropy of the clusters in spite of their random orientation. In
other words, the process of averaging does not cancel the effects that are duc to the anisotropy of the scatterers. The
patterns in Fig. 3 suggest that the cffects of the anisotropy are still visible provided that the observation is made
with the appropriate polarization.

In Fig. 4 we report the patterns for the same objects that we considered in Fig. 3; the only difference is the choice
of the polarization, i. e. the incident wave is p-polarized and the ¥-polarized component of the scattered wave is
considered. The patterns in (a) and (c), that refer to the single sphere and to the two-hemispheres clusters, show
a strong similarity; such a similarity is also shown by the patterns in (b) and (d) that refer to the two-spheres and
to the four-hemispheres, respectively. Thus, the gencral structure of the patterns seems to be related to the number
of the spheres that compose the actual scatterers, provided that two hemispheres are counted as one sphere. In this
respect we recall that all the scatterers that we investigate in this paper have the same volume.

We do not report any result for the case in which both the incident and the scattered wave are considered to be
J-polarized: these patterns do not add in fact any information worth of a scparate comment.




4. Conclusions

The results that we reported in the Scction 3 suggest a number of considerations both on the applicability of the
small particle approximation to the problenm at hand and to the ability of our approach to yield useful information
for the interpretation ol the experimental data.

In the present problem the range of applicability of the Rayleigh scattering approximation (RSA) is even more
restricted than in the case of the isolated particles. The use of the theory of the images, indeed, implies that one
has to deal with the compound scatterer that is composed by the actual particle and by its mirror image. According
to the definition that we gquoted in the preceding section,'? the effective size parameter of such a compound object
is larger than the size parameter of the actual scatterer. Of course, if the actual particle is not in contact with the
reflecting surface the effective size parameter is bound to increase. Obviously, the RSA is in no way applicable to
the scatterers that we consider in this paper both because the size parameter of each component sphere (and of each
hemisphere too) is not =mall and because the refractive index itsell is not close to unity. In this respect we recall
that we had to consider multipole fickls up to Ly = 10, in contrast to the RSA that amounts to consider the dipole
field only,i.e. Lay =1

The approach that we used in this paper has been designed just 1o deal with the scattering properties of anisotropic
particles without resorting to any approximation except for the truncation of the multipole expansions whose effect
can easily be checked, however. The usefulness of our approach stems from its genera'ity that, in turn, derives
from the transformation properties under rotation of the spherical multipole fields and of the transition matrix. As
a result, we were able to calenlate with a limited computational effort the scattered intensity from assemblies of
randomly oriented anisotropic scatterers on the rellecting surface.

The results of our calculations. in particular the results in Figs. 2 and 3, show that the scatlering pattern of our
model anisotropic scatterers are remarkably different from those of the spherical particles. Therefore, provided this
behavior pertains also to more general anisotropic scatterers than the model scatterers that we considered so far, a
polarization analysis of the grazing scattered intensity could yield useful information on the possible anisotropy of
the particles on the surface,

Appe.dix A: Scattering from a cluster of spheres

We consider a cluster of N spheres of radius b, and (possibly complex) refractive index n, whose centers lie at R,
the cluster is assumed to be embedded into a homogeneous medium of refractive index n. The incident field, that we
assume to be the plane wave whose multipole expansion is given by eq. (1), excites within each sphere the internal

field

int - o) o) e
E (l‘a) - Z('nlm JIm(”"l"l“)‘
plm

where ro = r — Ro. By writing the scattered field as a superposition of the fields that are scattered by the single
spheres,

E-’CG = Z Z Aﬁrrl)m H;::))( "k' l‘{')‘

a plm

the unknown amplitudes A‘a",)m can be calculated by imposing the boundary conditions across the surface of each
one of the spheres in the cluster. In this respect. we notice that the scattered field is written in terms of multipole
fields that are referred to different origins whereas the incident field is written in terms of multipoles that are referred
to the origin of the frame of reference. Therefore, before the boundary conditions are applied we have to use an
appropriate addition theorem to refer all the multipole fields to the same origin.?® For the incident plane wave, e. g.,
this theorem yiclds
E'" = ZW’(M 12 (nk.oxs).
im

alm*im

where

9

e v
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TS N
W((:llm = Z ,u,h:’ i’ ‘I”I’m (Al)

pritm?

The quantities 7, e ', , are the elements of the matrix that performs the teansfer of origin of the multipole ficlds
lml "m

from the unique origin a1 Ry to R,,; of course, in the present case the unique origin Ry coincides with the origin of
the reference frame, so that Ry = 0. We have

m+ .
IOE = Vo = iy T (1 = 8y)| ST OO+ 1 = b By —ppm )

#t

xGH»l-O": ,"t+[l."."l'+ﬂ( I\.\ n»ru (l)(»"( 1. ll. ll: —H, m’ + /‘)\

where Roo = Ry - R, and

NIV (S ISR ED Sty NUNTETNTI NN O [ ) (3] (A2)
A

In the preceding equations the ¢ s are the Clebseh-Gordan coeflicients and the quantities Zy are the Gaunt integrals'?
that are defined ax

Ial',m'; l,m) = /Y,T,,,,)},,,Y,\.,,,/_,,, dQ

(22 + 1)(20 + 1)

T CUAL0,00U A om' —m).

We will also need the inverse transfor from R, to Ra in order to get the seattered ﬁol(‘l in terms of multipoles referred

to an unique origin. This transfor is effected by a mateix whose elements, J‘m "l, are identical to the elements

m'
(r.p) ! | R
Jalm 1me above except that in (7 one must su stitute Ro, for Rao.

Anyway, once the incident and the scattered ficld are expressed in terms of multipoles referred in turn to each one
of the sites of the cluster and the I)oundarv conditions are imposed, one gets, for each p, a, ! and m, four equations

among which the internal amplitudes (o,,, can be eliminated. As a result, the scattered amplitudes .Aa Iy bUTD OUt
to be the solution of the system of linear non-homogencous equations

MA = -W, (A3)

where M = R~ + H and A and W rre the one-column vectors of the amplitudes AV} and W,(,P,)m‘ respectively. R
is a diagonal matrix of eletients

R(P-P y m - 6111"6”' ! ‘snn’l?n”‘

alma’ll
with

R (p) (1+ ﬁnbpl Jup(na kbn)”;(""bn) ~ (I + T’-nép'.’)“;(”akbo)“l("ko)
T+ Aabp Vi(nakb Ywi(nkby) - (1 + T by )uf(nakba)un(nkby)’

where
Fig = J . L,oowmle) = aji(r), wyl(r) = .r/l}”(.l').

R..( ) and R., Y coincide with the AMie coelicients by and ay, respectively, for the scattering by a homogencous sphere
of radms by nnd refractive index n,, eibedded in a hamogencous medium of refractive index n. The last matrix that
we need to define is H whose elements are

10
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‘ /21 + 1
71?,’,‘:,')0.,.,,,. = (' - hnu') [h)»p' - T (l ;/-’ )] x

LA+ = el piom 410Gyt e R OO =g ),

’

where G rm (K, R oe) is still given by eq. (A2) except for the substitution of h&” to jx and Rear = Ry = Ry
The formal solution of eq. (A3) is

A= -M"'wW

(r —1ytreh ap'
alm =- Z Z [M ],. Dot "u’l’m"

af ptey

This equation is rather similar to eq. (1) but we are prevented to identify M~1 with S by the fact that both the A’s
and the W’s are the amplitudes of multipoles that are referred to different origins. Hlowever, multiplication of the

{ ) . . . . .
preceding equation by 7,%/ ) ... and summation over a, p, L and m, after substitution for the W's of their expression

in eq. {Al) yields

) _ }: ey ('
Ahn - ,lm u'l'!l)'A ’/’m

o’ ptitm!

and, ultimately,

»p’) gl —atea’ ('
qu r'mt = Z Z Z N/ M ] 1AL I‘A\I"/u'l“‘l'l’m"

an' qLA g 1A
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Fig. 1. Sketeh of the avrangement that we chose for the display of ous results, The reflecting suelace coincides with the xz
axis and the y axis points towards the acvessible hid-space whose tefeactive index is o= 1. The polar angles of the direction
of observation range in the intervals 0° < e < IRO° and 0° < 0 < I80%0 The direction of wncidence, k.. that is indicated
by the arrow, has the polar angles oy = 90° and oy = 225%0 The arvangement of the four-henusplieres linear chain whose
scattering pattern is reported i Figo 2{(d) below s also shown

Fig. 2. Pattern of the scattered intensity (a) for a single sxphere on the veflecting surface, (b) for a dispersion of ran-
domly-oriented two-spheres clasters, (¢) for a dispersion of randomly oriented four-hemisplieres linear chains and (d) for a
four-hemispheres lincar chiain oviented as shown in Fig. 1. The wavelength of the incident wave is A = 628.3nm and the
refractive index of all the scatterers is ng = 3. The radins of the single sphere in (1) 8 b, = 126.0 nim whereas the radius both
of the spheres of the two-spheres cluster in (b) and of the hemispheres of the four-hemispheres linear chain in (¢) and (d) is
by = 100 nm. We actually report (in square meters) the quantitios ré i /lo i (a) and (d) and #? (1.,)/ 1o in (b} and (¢) as
a function of the angles of observation ¥ and 2« r? s the distance of observation, fo is the incident intensity, Jo.. s the
observed intensity and (7)) the aricntationally-averaged observed intensity.

Fig. 3. Pattern of the scatiered intensity {a) for a single sphere. (b) for a dispersion of randomly oriented two-spheres
clusters, (c) for a dispersion ol randomlv-oriented two-hemisphieres chsters and (d) for a dispersion of randomly-oriented
four-hemispheres linear cliins. Fhe vadii and the refractive indices ave as in Fig, 20 the radins of the hemispheres of the
two-hemispheres cluster equals the radins of the single sphere. We report {in square meters) 12 1,a/lo in (a) and 7 {({za)/ 1o

in (b}, (¢) and ().

Fig. 4. Same as Fig. 3 except that #20y flo and 0210 3/ 1o ave considered.
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